
2 Theory

energy (equation 2.4) with respect to displacement of the plate, it is possible to obtain
the induced electrostatic force FE as follows:

FE =
1

2

ξ0AV
2

(g0 − w)2
. (2.5)

The force of a linear spring with spring constant k is equal to:

FK = kw. (2.6)

In equilibrium the electrostatic force FE and spring force FK are equal. Consequently
the induced displacement w in the plate is proportional to the square of the applied
voltage V . For more details regarding electrostatic actuation and different configu-
rations in MEMS refer to Microsystem Design [35, ch. 6]. A simplified analytical
derivation for the deformations in a electrostatic actuated deformable mirror can be
found in [26].
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Figure 2.3. Electrostatic actuation concept. (a) Attraction force between oppositely
charged surfaces and (b) simplified parallel-plate and spring actuator model for the shaded
element in (a).

2.2. Spatial-carrier fringe-pattern analysis for surface
measurement

For performing wavefront measurement and consequently characterizing the fabri-
cated opto-fluidic deformable membranes, an interferometry-based measurement sys-
tem is developed. In this section, briefly the idea of employed interferometer is dis-
cussed and then the algorithm of spatial-carrier fringe-pattern analysis for quantitative
phase measurement is introduced.

2.2.1. Mach-Zehnder interferometer

Interferometers with different configurations are an important group of precise optical
measurement setups both in macro and micro scales [36, p. 136]. Interference happens
when two waves (here electromagnetic waves), that are coherent, meet. For more
details on the derivation of the superimposed field and intensity refer to [37, ch. 9].
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2.2 Spatial-carrier fringe-pattern analysis for surface measurement

Among different configurations of interferometers, Mach-Zehnder has a special two-
beam arrangement making it suitable for measuring Optical Path Difference (OPD)
caused by a transparent refractive element that is fixed in one of the interferometer
arms (measurement arm). As it can be seen in figure 2.4, first coherent light from a
laser is collimated and then split into two beams at beam splitter α; namely refer-
ence beam and the measurement beam. The measurement beam interacts with the
refractive opto-fluidic membrane. The shape of the membrane changes the amount
of liquid in path of the laser beam, which results in an effective change in the optical
path length because of the higher refractive index of the liquid nl with respect to that
of air nair. The 2 beams recombine at the second beam splitter β and interfere. The
modulation of the intensity induced due to interference with a phase shift of ∆φ at
each point of the beam may be calculated with the following [36, p. 142]:

I =
I0
2

(1 + cos ∆φ) =
I0
2

[
1 + cos

(
2πhl∆n

λ0

)]
, (2.7)

where ∆φ is equal to:

∆φ =

(
2πhl∆n

λ0

)
. (2.8)

I0 is the intensity of light source, hl is the height of liquid at each point of the mem-
brane surface, ∆n is the difference between refractive indices and λ0 is the wavelength
of light source in vacuum. It is worth mentioning that if the refractive element was
not in the measurement path, the output interferogram would be a series of parallel
fringe lines with a period that is a function of the relative angle between the plane
mirrors (no fringe for zero relative angle).
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Figure 2.4. Schematic representation of Mach-Zehnder interferometer used in proposed
measurement system.
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2.2.2. Spatial-carrier fringe-pattern analysis algorithm

There are two major strategies to analyze interferometric data in to quantitative
phase data. Temporal Phase Measurement (TPM) methods use a phase shifting that
requires at least three intesnity measurements and an actuator for shifting the phase.
Such a system is not suitable to implement for a real-time setup. Spatial Phase
Measurement (SPM) methods on the other hand can capture the required data in
a single frame with a spatial-carrier and are much easier to implement for real-time
analysis. However they require a higher computational cost [38]. The most popular
SPM method is the spatial-carrier fringe-pattern analysis method that will be utilized
in this master thesis. This technique was first introduced by Takeda et al. [39] using
one dimensional Fourier Transform (FT) along one scanning line in 1982 and later
extended to two dimensions by Macy [40]. Spatial-carrier technique is still state-of-
the-art for real-time phase measurement using interferograms [41].
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Figure 2.5. Algorithm of the spatial-carrier technique for retrieving surface profile data
from an interferogram. All the figures are from actual performed measurements using de-
veloped measurement system in this thesis.

Figure 2.5 summarizes the algorithm for performing spatial-carrier technique. If there
is no relative angle between the plane mirrors, the interferogram in spatial domain
looks like figure 2.5a which shows the distorsions caused by the deformable membrane.
The general form of the intensity pattern of an interferogram is given by [38]:

I (r) = D (r)
[
A (r) +

∑
Cn (r)

]
+N (r) , (2.9)

where Cn (r) is as follows:

Cn (r) = 0.5Bn (r) exp [jn (2πf0r + φ (r))] . (2.10)
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2.2 Spatial-carrier fringe-pattern analysis for surface measurement

r is the position vector of the point (r, θ) in the interferogram, n = ...,−2,−1, 1, 2, ...
is an integer value pertaining the lobe number, f0 is the spatial-carrier frequency that
can be seen in figure 2.5d, φ (r) is the unknown phase map, D (r) is a mask defining
the interferogram area and is 1 inside and 0 outside of the interferogram, A (r) is the
background intensity distribution, Bn (r) is the amplitude of the local contrast of the
nth lobe pattern and N (r) is the random noise. Taking the FT of the interferogram
(equation 2.9) gives:

i(f) = d(f) ∗
[
a(f) +

∑
cn(f)

]
+ n(f), (2.11)

where f is the position vector of spatial frequencies. Figure 2.5c shows the FT of the
interferogram shown in figure 2.5b. By adding a large spatial-carrier frequency f0 by
tilting one of the mirrors, the lobes cn(f) are separated from the background intensity,
which stays at the origin. The first order lobe c1(f), which contains the desired phase
data φ(r), is shifted by f0 from the origin. This can be seen by comparing figures
2.5c and 2.5e. To compromise for the influence of discontinuity of data at the edges,
a 2D analog of Hamming window is applied to the interferogram before taking FT
of the data [38]. Improvement can be observed by comparing figure 2.5e and figure
2.5f. The strong vertical lines in the Fourier domain that are caused by edge effects
are reduced after applying the Hamming window in figure 2.5f. Next step is to find
and filter out the 1st order lobe c1 (f) (see figure 2.5g). To find the appropriate filter
position and diameter, the following points are important:

• In the Fourier domain, spectrum of C1 (r) should not overlap with the spectrum
of the background intensity A (r) and the higher order lobes.

• The position of the filter has a significant effect on the accuracy of the measure-
ments. Because of the discrete nature of the data, the appropriate position of
the filter center might be in between two pixels. Such situations may be allevi-
ated by use of a high resolution sensor or can be compensated by adjusting the
carrier frequency or diameter of the filter.

After filtering the 1st order lobe, it is shifted to the origin to remove the carrier
frequency. It is worth mentioning that the filtered first lobe is related to the Point
Spread Function (PSF) of the system, which is computed by a Fourier transform
instead of imaging the wavefront with a lens.

Next an inverse FT is performed to obtain C1(r). Consequently the wrapped phase,
which is the phase fringes constrained in the range (−π, π], can be calculated as
follows:

φ(r) = arctan

(
Im [C1(r)]

Re [C1(r)]

)
. (2.12)

Wrapped phase (figure 2.5h) needs to go through an unwrapping routine to give a
continuous phase map. For more details regarding the employed unwrapping function
refer to [42]. The source code of this function can be found in [43]. With the derived
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phase map φ (r) (figure 2.5i), it is possible to calculate membrane height h at each
point (r, θ) using equation 2.8 (figure 2.5j). The overall obtained accuracy of this
method under controlled conditions is proved to be λ/100 [38]. For a recent reference
regarding spatial-carrier technique refer to Interferogram Analysis for Optical Testing
by Malacara [41, ch. 8].

2.3. Adaptive optics in microscopy

Since invention of telescopes and microscopes there has been a constant quest to
improve imaging resolution and contrast and push the limits of image quality to be
only limited by wave nature of light [4]. However the resolution of even high-end
microscopes is usually affected by the optical properties of the specimen due to inho-
mogeneity of refractive indices and/or by optical elements. Figure 2.6b demonstrates
the aberrations caused by differences in refractive indices. This problem is more pro-
nounced when imaging deep into biological tissues. In order to push forward the
depth that can be imaged inside the specimens from only a few cellular layers with
acceptable resolution, AO techniques has been employed in microscopy to actively
control the wavefronts present in image formation [3]. As it can be seen in figure
2.6c if the aberration is known, it is possible to correct the wavefront before image
formation by compensating for the phase distortions. This is achieved by generating
the conjugate of the phase of the present aberrations using the wavefront modulator.
There are direct and indirect methods of aberration measurement. They are briefly
explained in the following subsections.
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Figure 2.6. Demonstration of the effect of inhomogeneity of refractive indices on the
imaging properties of a microscope objective. (a) Formation of an ideal focus in the absence
of aberrations. (b) Incoming flat wavefront gets aberrated because of differences in refractive
indices. (c) The wavefront is corrected before image formation by applying the conjugate
of the phase of the aberrations by help of the wavefront modulator.
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